Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/79021
Title: Biomechanics-driven approach to develop an optimal customized dental implant abutment design for implant-supported single crown : A multi-objective optimization finite element analysis
Other Titles: แนวทางที่ขับเคลื่อนด้วยชีวกลศาสตร์เพื่อพัฒนาการออกแบบหลักยึดครอบฟันซี่เดี่ยวเฉพาะบุคคลบนรากเทียมที่เหมาะที่สุดโดยวิธีการหาค่าเหมาะที่สุดแบบพหุปัจจัยด้วยวิธีการไฟไนต์เอลิเมนต์
Authors: Pongsakorn Poovarodom
Authors: Pimduen Rungsiyakull
Chaiy Rungsiyakull
Jarupol Suriyawanakul
Pongsakorn Poovarodom
Issue Date: Aug-2023
Publisher: Chiang Mai : Graduate School, Chiang Mai University
Abstract: The optimal configuration of a customized implant abutment plays a pivotal role in bone remodeling, and various factors can influence this design. However, assessing the effect of different design parameters on bone remodeling has been a challenge due to the limitations of experimental methods, particularly when considering individual patient differences. This study presents a novel, optimization-focused approach to the design of two-piece zirconia dental implant abutments. Focusing on three key parameters - implant placement depth, abutment taper degree, and the gingival height of the titanium base abutment - we've used time-dependent finite element analysis to optimize these factors. The aim of this optimization strategy is to improve bone remodeling and reduce bone loss that lead to late implant failures by maximizing and equalizing bone density in the peri-implant region. This methodology brings the precision of computational modeling to address patient-specific customization, thus improving the design precision of the abutments. In conclusion, this study underscores the paramount impact of implant placement depth and titanium base gingival height on bone remodeling, compared to the relatively minor influence of the abutment taper degree. The optimal design resulted in an improvement in the cortical bone density trend and lower standard deviation in density. Although initial trends in cancellous bone density under the optimized design were less favorable, they g eventually mirrored the trends observed in the original model. By showcasing how optimization in design parameters can significantly impact bone density and remodeling, these findings serve to enhance the efficiency and effectiveness of dental implant procedures.
URI: http://cmuir.cmu.ac.th/jspui/handle/6653943832/79021
Appears in Collections:DENT: Theses

Files in This Item:
File Description SizeFormat 
630955903-PONGSAKORN POOVARODOM.pdf1.7 MBAdobe PDFView/Open    Request a copy


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.