Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/72493
Title: | Influenza, dengue and common cold detection using LSTM with fully connected neural network and keywords selection |
Authors: | Wanchaloem Nadda Waraporn Boonchieng Ekkarat Boonchieng |
Authors: | Wanchaloem Nadda Waraporn Boonchieng Ekkarat Boonchieng |
Keywords: | Biochemistry, Genetics and Molecular Biology;Computer Science;Mathematics |
Issue Date: | 1-Dec-2022 |
Abstract: | Symptom-based machine learning models for disease detection are a way to reduce the workload of doctors when they have too many patients. Currently, there are many research studies on machine learning or deep learning for disease detection or clinical departments classification, using text of patient’s symptoms and vital signs. In this study, we used the Long Short-term Memory (LSTM) with a fully connected neural network model for classification, where the LSTM model was used to receive the patient’s symptoms text as input data. The fully connected neural network was used to receive other input data from the patients, including body temperature, age, gender, and the month the patients received care in. In this research, a data preprocessing algorithm was improved by using keyword selection to reduce the complexity of input data for overfitting problem prevention. The results showed that the LSTM with fully connected neural network model performed better than the LSTM model. The keyword selection method also increases model performance. |
URI: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85124963520&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/72493 |
ISSN: | 17560381 |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.