Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/70689
Title: Electron microscopy investigation of rice husk-derived silicon-tin/nitrogen-doped graphene composites nanostructure
Authors: Viratchara Laokawee
Thanapat Autthawong
Bralee Chayasombat
Aishui Yu
Thapanee Sarakonsri
Authors: Viratchara Laokawee
Thanapat Autthawong
Bralee Chayasombat
Aishui Yu
Thapanee Sarakonsri
Keywords: Materials Science;Physics and Astronomy
Issue Date: 1-Jan-2020
Abstract: © 2020 Trans Tech Publications Ltd, Switzerland. Nowadays, there is an increasing of the demanding in high energy density lithium-ion batteries (LIBs) due to the growing of energy storage needs for electronic vehicles and portable devices. Silicon (Si) and Tin (Sn) are the promising anode materials for LIBs due to their high theoretical capacity of 4200 mAh/g and 994 mAh/g. Moreover, Si can be derived from rice husk which is the main agricultural product in Thailand. However, the using of Si and Sn encounters with the huge volume expansion during lithiation and delithiation process. To alleviate this problem, Nitrogen-doped graphene (NrGO), carbon supporter, is used as composite with these metals to buffer the volume change and increase the electrical conductivity of composites. This work aims to synthesis Si/NrGO and SiSn/NrGO nanocomposites and Si used in these composites is derived from rice husk. All products were characterized by X-rays diffraction (XRD), Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques. XRD results showed that the composites contained phases of Si, Sn and carbon. The electron microscopy techniques were the main part to clarify the morphology and distribution of Si and Sn particles on NrGO. SEM and TEM results confirm that there were small sized particles of Si and Sn dispersed and covered on NrGO surface. Furthermore, the electrochemical properties of prepared composites were measured to confirm their efficiency as anode materials in lithium-ion batteries by coin cell assembly. The composite with 10 percent Si and 10 percent Sn on NrGO could deliver a high capacity around 480 mAh/g over 100 cycles and expected to use as anode materials in the next generation lithium-ion batteries.
URI: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85088208587&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/70689
ISSN: 16629779
10120394
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.