Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/70158
Title: | Development of Eu<sup>3+</sup>-doped phosphate glass for red luminescent solid-state optical devices |
Authors: | P. Aryal H. J. Kim A. Khan S. Saha S. J. Kang S. Kothan Y. Yamsuk J. Kaewkhao |
Authors: | P. Aryal H. J. Kim A. Khan S. Saha S. J. Kang S. Kothan Y. Yamsuk J. Kaewkhao |
Keywords: | Biochemistry, Genetics and Molecular Biology;Chemistry;Physics and Astronomy |
Issue Date: | 1-Nov-2020 |
Abstract: | © 2020 Eu3+-doped lithium phosphate glasses, (63-x) P2O5–32Li2O–5Al2O3‒xEu2O3, where 0≤x≤5 mol% concentrations were prepared by conventional melt-quenching technique. The glasses were characterized through various physical and optical properties at room and low temperatures (10K). The radiative transition probability, stimulated emission cross-section, branching ratio and radiative lifetime of the glasses were evaluated following the Judd-Ofelt theory. Two-fold increase in the photoluminescence (PL) intensity was observed under 394 nm excitation at 10K as compared to that measured at room temperature. The absence of 7F1→5D3,1 excitation transition at 10K was found due to a decrease in thermal energy of ground states. The presence of O2−−Eu3+ charge transfer excitation band (CTB, 200–275 nm) was observed. An optimum PL emission was recorded in the glass with 3 mol%, whereas the concentration quenching was noticed for the sample with 5 mol%. The results show that the Eu3+-doped lithium phosphate glasses could be potential candidates for red laser applications. |
URI: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85088872051&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/70158 |
ISSN: | 00222313 |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.