Please use this identifier to cite or link to this item:
Title: The effect of ionic surfactant adsorption on the rheology of ceramic glaze suspensions
Authors: Preecha Panya
Erica J. Wanless
Orn Anong Arquero
George V. Franks
Keywords: Materials Science
Issue Date: 1-Dec-2005
Abstract: The rheological behavior of ceramic glaze suspensions containing limestone, quartz, feldspar, and kaolin, has been improved by the addition of either a cationic (cetylpyridinium chloride, CPC) or an anionic (sodium dodecylbenzenesulfonate, SDBS) surfactant. Additional stability and lower viscosity can result from either electrical double layer repulsion or steric repulsion depending on the surfactant type, concentration, ionic strength, and pH. Underdosing may result in high viscosity due to charge neutrality and hydrophobic attraction between particles while overdosing may result in high viscosity possibly due to micelles in the solution. The situation is particularly complicated for glazes containing limestone and anionic surfactant at moderate to low pH where calcium carbonate is soluble. The anionic surfactant and calcium ions can form complexes that are poorly soluble and strongly adsorb to the surface of the particles. The resulting thick steric layer of complexes produces a significant repulsion and stable, low viscosity suspensions. ζ potential measurements and adsorption isotherms are used to interpret the rheological behavior.
ISSN: 00027820
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.

Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.