Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/59715
Title: Stability analysis for a class of functional differential equations and applications
Authors: V. N. Phat
P. Niamsup
Authors: V. N. Phat
P. Niamsup
Keywords: Mathematics
Issue Date: 15-Dec-2009
Abstract: The problem of Lyapunov stability for functional differential equations in Hilbert spaces is studied. The system to be considered is non-autonomous and the delay is time-varying. Known results on this problem are based on the Gronwall inequality yielding relative conservative bounds on nonlinear perturbations. In this paper, using more general Lyapunov-Krasovskii functional, neither model variable transformation nor bounding restriction on nonlinear perturbations is required to obtain improved conditions for the global exponential stability of the system. The conditions given in terms of the solution of standard Riccati differential equations allow to compute simultaneously the two bounds that characterize the stability rate of the solution. The proposed method can be easily applied to some control problems of nonlinear non-autonomous control time-delay systems. © 2009 Elsevier Ltd. All rights reserved.
URI: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=72149124470&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/59715
ISSN: 0362546X
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.