Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/59113
Title: | Incorporating fuzzy sets into dempster-shafer theory for decision fusion |
Authors: | Somnuek Surathong Sansanee Auephanwiriyakul Nipon Theera-Umpon |
Authors: | Somnuek Surathong Sansanee Auephanwiriyakul Nipon Theera-Umpon |
Keywords: | Physics and Astronomy |
Issue Date: | 1-Aug-2018 |
Abstract: | © 2018 Pushpa Publishing House, Allahabad, India. Decision fusion is one of the popular methods in the classification research area. The Dempster’s rule of combination is one of the decision fusion methods used frequently in many research areas. However, there are so many uncertainties in classifier output. Hence, we introduce a fuzzy Dempster’s rule of combination where we fuzzify the basic probability assignment and compute the fuzzy combination. We run the experiment with 4 classifiers, i.e., linear discriminant analysis, K-nearest neighbors, Naïve Bayes, and multilayer perceptron. Therefore, there are 6 combinations in the experiment. We compare our fusion result with that from the Dempster’s rule of combination. All of our results are comparable or better than those from the Dempster’s rule of combination. |
URI: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85051408133&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/59113 |
ISSN: | 09735763 |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.