Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/56927
Title: Polymer particles filled with multiple colloidal silica via in situ sol-gel process and their thermal property
Authors: Hongsik Byun
Jiayun Hu
Phakkhananan Pakawanit
Laongnuan Srisombat
Jun Hyun Kim
Authors: Hongsik Byun
Jiayun Hu
Phakkhananan Pakawanit
Laongnuan Srisombat
Jun Hyun Kim
Keywords: Chemical Engineering;Chemistry;Engineering;Materials Science
Issue Date: 13-Jan-2017
Abstract: © 2016 IOP Publishing Ltd. The in situ formation of dielectric silica (SiO2) particles was carried out in the presence of temperature-responsive poly(N-isopropylacrylamide) particles. Unlike the typical sol-gel method used to prepare various SiO2particles, the highly uniform growth of SiO2particles was achieved within the cross-linked polymer particles (i.e., the polymer particles were filled with the SiO2particles) simply by utilizing interfacial interactions, including the van der Waals attractive force and hydrogen bonding in nanoscale environments. The structural and morphological features as well as the thermal behaviors of these composites were thoroughly examined by electron microscopes, dynamic light scattering, and thermal analyzers. In particular, the thermal properties of these composites were completely different from the bare polymer, SiO2particles, and their mixtures, which clearly suggested the successful incorporation of multiple SiO2particles within the cross-linked polymer particles. Similarly, titanium oxide (TiO2) particles were easily embedded within the polymer particle template which exhibited improved overall properties. As a whole, understanding in situ formation of nanoscale inorganic particles within polymer particle templates can allow for designing novel composite materials possessing enhanced chemical and physical properties.
URI: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85004039830&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/56927
ISSN: 13616528
09574484
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.