Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/55162
Title: Hydrolysed inulin alleviates the azoxymethane-induced preneoplastic aberrant crypt foci by altering selected intestinal microbiota in Sprague–Dawley rats
Authors: Thanawat Pattananandecha
Sasithorn Sirilun
Yodsawee Duangjitcharoen
Bhagavathi Sundaram Sivamaruthi
Prasit Suwannalert
Sartjin Peerajan
Chaiyavat Chaiyasut
Authors: Thanawat Pattananandecha
Sasithorn Sirilun
Yodsawee Duangjitcharoen
Bhagavathi Sundaram Sivamaruthi
Prasit Suwannalert
Sartjin Peerajan
Chaiyavat Chaiyasut
Keywords: Biochemistry, Genetics and Molecular Biology;Medicine;Pharmacology, Toxicology and Pharmaceutics
Issue Date: 1-Sep-2016
Abstract: © 2016 Informa UK Limited, trading as Taylor & Francis Group. Context Inulin, a non-digestible carbohydrate isolated from Helianthus tuberosus L. (Asteraceae), has been shown to alter the gut beneficial bacteria including Lactobacillus spp. and Bifidobacteria. Inulin also influences the activities of intestinal microbiota that could prevent the colon cancer development. Objective This study determines the effect of hydrolysed inulin with different degrees of polymerisation on alteration of intestinal microbiota and their activities on azoxymethane (AOM)-induced preneoplastic aberrant crypt foci (ACF) in rats. Materials and methods Seventy-two male Sprague–Dawley rats were randomly divided into six groups (three control and three AOM-treated groups) and the animal were fed with either a normal diet or diet containing 10% of long-chain inulin (InuL) or short-chain inulin (InuS), respectively, for 17 weeks. Colon cancer was induced in rats by injecting AOM subcutaneously at the 8th and 9th week of the study period. At the end of the experiment, cecal contents of rats were examined for selected microbiota, organic acids, putrefactive compounds and microbial enzymes. ACF formation was microscopically examined. Results The inulin diets significantly increased the weight and decreased the pH of the caecal content. The rats fed with InuL-supplemented diet showed approximately 2.9- and 6.8-fold increases in the biomass of Lactobacillus spp. and Bifidobacteria, respectively. Naive and AOM-treated rats fed with inulin-supplemented diet showed ∼1.3- and ∼2.2-fold decreases in the biomass of Escherichia coli and Salmonellaenterica serovar Typhi, respectively. Inulins significantly decreased the colonic concentration of phenol, p-cresol and indole. Reduction in the activity of microbial enzymes such as β-glucuronidase, azoreductase and nitroreductase were observed in inulin-treated animals. Reduction in the ACF formation has been observed in inulin-treated groups. Discussion and conclusion The present study demonstrates that dietary administration of inulin reduces the formation of preneoplastic lesions in the colon, possibly by altering the microecology and microbial activities on carcinogenesis.
URI: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84955070529&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/55162
ISSN: 17445116
13880209
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.