Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/54962
Title: Nucleotide binding domain 1 pharmacophore modeling for visualization and analysis of P-glycoprotein–flavonoid molecular interactions
Authors: Pathomwat Wongrattanakamon
Vannajan Sanghiran Lee
Piyarat Nimmanpipug
Supat Jiranusornkul
Keywords: Agricultural and Biological Sciences
Biochemistry, Genetics and Molecular Biology
Environmental Science
Issue Date: 1-Oct-2016
Abstract: © 2016, Higher Education Press and Springer-Verlag Berlin Heidelberg. Background: P-glycoprotein (P-gp) is a 170-kDa membrane protein. It provides a barrier function and help to excrete toxins from the body as a transporter. Some bioflavonoids have been shown to block P-gp activity. Objective: To evaluate the important amino acid residues within nucleotide binding domain 1 (NBD1) of P-gp that play a key role in molecular interactions with flavonoids using structure-based pharmacophore model. Methods: In the molecular docking with NBD1 models, a putative binding site of flavonoids was proposed and compared with the site for ATP. The binding modes for ligands were achieved using LigandScout to generate the P-gp–flavonoid pharmacophore models. Results: The binding pocket for flavonoids was investigated and found these inhibitors compete with the ATP for binding site in NBD1 including the NBD1 amino acid residues identified by the in silico techniques to be involved in the hydrogen bonding and van der Waals (hydrophobic) interactions with flavonoids. Conclusion: These flavonoids occupy with the same binding site of ATP in NBD1 proffering that they may act as an ATP competitive inhibitor.
URI: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84988662367&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/54962
ISSN: 16747992
16747984
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.