Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/54506
Title: | Mechanical structure optimization in minimum-time motion control of flexible bodies |
Authors: | Boonruk Suchaitanawanit Matthew O.T. Cole |
Authors: | Boonruk Suchaitanawanit Matthew O.T. Cole |
Keywords: | Engineering |
Issue Date: | 1-Jan-2015 |
Abstract: | © 2015 Elsevier Ltd. This paper considers the problem of minimum-time motion control of a flexible body for which the dynamic properties can be optimized within a structural design. This allows a matching of modal characteristics to a control task such that reductions in time-of-motion can be achieved compared with unoptimized designs. The problem formulation is based on an elastic structure undergoing a motion task with specified boundary conditions and subject to limits on actuation forces. A numerical method for calculating minimum-time control input solutions based on an iterative construction of the reachable set is first considered. A structural optimization approach is further developed based on continuity properties of the solution set, these admitting a first order perturbation analysis from which an optimization of system design parameters can be achieved. A selection of numerical case studies are presented involving single and multi-mode structures. Possibilities for realization of the approach using variable stiffness/deformable structures are discussed and results from a linear motion stage with tunable-stiffness flexible armature presented that demonstrate the potential benefits. |
URI: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84947748128&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/54506 |
ISSN: | 00051098 |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.