Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/52992
Title: Synthesis and characterization of filtered-cathodic-vacuum-arc-deposited TiO<inf>2</inf>films for photovoltaic applications
Authors: C. Aramwit
S. Intarasiri
D. Bootkul
U. Tippawan
B. Supsermpol
N. Seanphinit
W. Ruangkul
L. D. Yu
Authors: C. Aramwit
S. Intarasiri
D. Bootkul
U. Tippawan
B. Supsermpol
N. Seanphinit
W. Ruangkul
L. D. Yu
Keywords: Physics and Astronomy
Issue Date: 1-Jan-2013
Abstract: Titanium dioxide (TiO2) is well-known as a photovoltaic and photocatalytic material. For improvement in the dye-sensitized solar cell (DSSC) performance efficiency, the photocatalyst TiO2layer would be desired in nanoporous anatase. In this research, TiO2films were synthesized on glass or p-type silicon substrate using our in-house Filtered Cathodic Vacuum Arc Deposition (FCVAD) system. The deposition was operated at varied oxygen (O2) partial pressures of 10-4, 10-3, 10-2to 10-1torr with fixed 0 or 250-V bias and 600-V arc for 10 or 20 minutes. The film transparency increased with increasing of the O2pressure, indicating increase in the structure required for applications in dye-sensitized solar cells. The films were characterized using the Energy-Dispersive X-ray spectroscopy (EDS) and Raman spectroscopy techniques. The EDS confirmed that the transparent deposited films contained stoichiometric titanium and oxygen under the medium O2pressure. Raman spectra confirmed that the films were TiO2containing some rutile but no anatase which needed annealing to form. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used for evaluation of the film's surface morphology and thickness. The result showed that increasing of the O2pressure decreased the thickness to a nanoscale but increased the amount of TiO2. © IOP Publishing Ltd 2013.
URI: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84876847339&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/52992
ISSN: 17426596
17426588
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.