Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/50460
Title: | The influence of storage temperature during machine perfusion on preservation quality of marginal donor livers |
Authors: | Peter Olschewski Paul Gaß Veeravorn Ariyakhagorn Kerstin Jasse Gerhard Hunold Martin Menzel Wenzel Schöning Volker Schmitz Peter Neuhaus Gero Puhl |
Authors: | Peter Olschewski Paul Gaß Veeravorn Ariyakhagorn Kerstin Jasse Gerhard Hunold Martin Menzel Wenzel Schöning Volker Schmitz Peter Neuhaus Gero Puhl |
Keywords: | Agricultural and Biological Sciences;Biochemistry, Genetics and Molecular Biology;Medicine |
Issue Date: | 1-Jun-2010 |
Abstract: | Background: Although non-heart-beating donors have the potential to increase the number of available organs, the livers are used very seldom because of the risk of primary non-function. There is evidence that machine perfusion is able to improve the preservation of marginal organs, and therefore we evaluated in our study the influence of the perfusate temperature during oxygenated machine perfusion on the graft quality. Methods: Livers from male Wistar rats were harvested after 60-min warm ischemia induced by cardiac arrest. The portal vein was cannulated and the liver flushed with Lifor® (Lifeblood Medical, Inc.) organ preservation solution for oxygenated machine perfusion (MP) at 4, 12 or 21 °C. Other livers were flushed with HTK and stored at 4 °C by conventional cold storage (4 °C-CS). Furthermore two groups with either warm ischemic damage only or without any ischemic damage serve as control groups. After 6. h of either machine perfusion or cold storage all livers were normothermic reperfused with Krebs-Henseleit buffer, and functional as well as structural data were analyzed. Results: Contrary to livers stored by static cold storage, machine perfused livers showed independently of the perfusate temperature a significantly decreased enzyme release of hepatic transaminases (ALT) during isolated reperfusion. Increasing the machine perfusion temperature to 21°C resulted in a marked reduction of portal venous resistance and an increased bile production. Conclusions: Oxygenated machine perfusion improves viability of livers after prolonged warm ischemic damage. Elevated perfusion temperature of 21°C reconstitutes the hepatic functional capacity better than perfusion at 4 or 12°C. © 2010 Elsevier Inc. |
URI: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=77952671314&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/50460 |
ISSN: | 10902392 00112240 |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.