Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/79948
Title: Some Properties of Hyperbolic Generalized Tribonacci Quaternions
Other Titles: สมบัติบางประการของควอเทอร์เนียนไตรโบนัชชีวางนัยทั่วไปเชิงไฮเพอร์โบลา
Authors: Phachara Wongmek
Authors: Narawadee Phudolsitthiphat
Phachara Wongmek
Issue Date: Jun-2024
Publisher: Chiang Mai : Graduate School, Chiang Mai University
Abstract: In this independent study, we introduce the concept of hyperbolic generalized tribonacci quaternions, a novel extension within the realm of hyperbolic quaternion sequences, denoted by HW_n, defined by HW_n=W_n+(W_{n+1}){j_1}+(W_{n+2}){j_2}+(W_{n+3}){j_3}, n≥0, where W_n is the tribonacci number and {j_1}, {j_2}, {j_3} satisfy equalities {j_1}^2}={j_2}^2}={j_3}^2}={j_1j_2j_3}=1, {j_1j_2}={j_3}=-{j_2j_1}, {j_2j_3}={j_1}=-{j_3j_2}, {j_3j_1}={j_2}=-{j_1j_3}. Through rigorous analysis, we derive the generating function for hyperbolic generalized tribonacci quaternions and establish Binet's formula, providing a closed-form expression for the terms of the sequence. Furthermore, we present a comprehensive summation formula, enhancing the utility and application of these quaternions in mathematical studies. This expanded framework offers deeper insights and broader applicability, contributing to the advancement of research in hyperbolic quaternion sequences and their related fields.
URI: http://cmuir.cmu.ac.th/jspui/handle/6653943832/79948
Appears in Collections:SCIENCE: Independent Study (IS)

Files in This Item:
File Description SizeFormat 
640532002-PHACHARA WONGMEK.pdf556.52 kBAdobe PDFView/Open    Request a copy


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.