Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/76900
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHatairat Yingtaweesittikulen_US
dc.contributor.authorKarrie Koen_US
dc.contributor.authorNurdyana Abdul Rahmanen_US
dc.contributor.authorShireen Yan Ling Tanen_US
dc.contributor.authorNiranjan Nagarajanen_US
dc.contributor.authorChayaporn Suphavilaien_US
dc.date.accessioned2022-10-16T07:20:05Z-
dc.date.available2022-10-16T07:20:05Z-
dc.date.issued2021-12-14en_US
dc.identifier.issn2296858Xen_US
dc.identifier.other2-s2.0-85121989974en_US
dc.identifier.other10.3389/fmed.2021.790662en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85121989974&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/76900-
dc.description.abstractBackground: The ongoing COVID-19 pandemic is a global health crisis caused by the spread of SARS-CoV-2. Establishing links between known cases is crucial for the containment of COVID-19. In the healthcare setting, the ability to rapidly identify potential healthcare-associated COVID-19 clusters is critical for healthcare worker and patient safety. Increasing sequencing technology accessibility has allowed routine clinical diagnostic laboratories to sequence SARS-CoV-2 in clinical samples. However, these laboratories often lack specialized informatics skills required for sequence analysis. Therefore, an on-site, intuitive sequence analysis tool that enables clinical laboratory users to analyze multiple genomes and derive clinically relevant information within an actionable timeframe is needed. Results: We propose CalmBelt, an integrated framework for on-site whole genome characterization and outbreak tracking. Nanopore sequencing technology enables on-site sequencing and construction of draft genomes for multiple SARS-CoV-2 samples within 12 h. CalmBelt's interactive interface allows users to analyse multiple SARS-CoV-2 genomes by utilizing whole genome information, collection date, and additional information such as predefined potential clusters from epidemiological investigations. CalmBelt also integrates established SARS-CoV-2 nomenclature assignments, GISAID clades and PANGO lineages, allowing users to visualize relatedness between samples together with the nomenclatures. We demonstrated multiple use cases including investigation of potential hospital transmission, mining transmission patterns in a large outbreak, and monitoring possible diagnostic-escape. Conclusions: This paper presents an on-site rapid framework for SARS-CoV-2 whole genome characterization. CalmBelt interactive web application allows non-technical users, such as routine clinical laboratory users in hospitals to determine SARS-CoV-2 variants of concern, as well as investigate the presence of potential transmission clusters. The framework is designed to be compatible with routine usage in clinical laboratories as it only requires readily available sample data, and generates information that impacts immediate infection control mitigations.en_US
dc.subjectMedicineen_US
dc.titleCalmBelt: Rapid SARS-CoV-2 Genome Characterization for Outbreak Trackingen_US
dc.typeJournalen_US
article.title.sourcetitleFrontiers in Medicineen_US
article.volume8en_US
article.stream.affiliationsDuke-NUS Medical Schoolen_US
article.stream.affiliationsA-Star, Genome Institute of Singaporeen_US
article.stream.affiliationsNUS Yong Loo Lin School of Medicineen_US
article.stream.affiliationsSingapore General Hospitalen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.