Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/76889
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Suthep Suantai | en_US |
dc.contributor.author | Dawan Chumpungam | en_US |
dc.contributor.author | Panitarn Sarnmeta | en_US |
dc.date.accessioned | 2022-10-16T07:19:48Z | - |
dc.date.available | 2022-10-16T07:19:48Z | - |
dc.date.issued | 2021-01-01 | en_US |
dc.identifier.issn | 18434401 | en_US |
dc.identifier.issn | 15842851 | en_US |
dc.identifier.other | 2-s2.0-85108613956 | en_US |
dc.identifier.other | 10.37193/CJM.2021.02.14 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85108613956&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/76889 | - |
dc.description.abstract | In this work, we introduce and study a new class of weak enriched nonexpasive mappings which is a generalization of enriched nonexpansive mappings provided by Berinde [Approximating fixed points of enriched nonexpansive mappings by Krasnoselskij iteration in Hilbert spaces, Carpathian J. Math., 35 (2019), No. 3, 293–304]. This class of mappings generalizes several important classes of nonlinear mappings. We prove some fixed point theorems regarding this kind of mappings which extend some important results in [Berinde, V., Approximating fixed points of enriched nonexpansive mappings by Krasnoselskij iteration in Hilbert spaces, Carpathian J. Math., 35 (2019), No. 3, 293–304]. Moreover, some examples, to ensure the existence of these mappings and support our main theorems, are also given. | en_US |
dc.subject | Mathematics | en_US |
dc.title | Existence of fixed points of weak enriched nonexpansive mappings in banach spaces | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | Carpathian Journal of Mathematics | en_US |
article.volume | 37 | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.