Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/76888
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | A. Kaewkhao | en_US |
dc.contributor.author | C. Klangpraphan | en_US |
dc.contributor.author | B. Panyanak | en_US |
dc.date.accessioned | 2022-10-16T07:19:48Z | - |
dc.date.available | 2022-10-16T07:19:48Z | - |
dc.date.issued | 2021-01-01 | en_US |
dc.identifier.issn | 18434401 | en_US |
dc.identifier.issn | 15842851 | en_US |
dc.identifier.other | 2-s2.0-85108628384 | en_US |
dc.identifier.other | 10.37193/CJM.2021.02.16 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85108628384&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/76888 | - |
dc.description.abstract | In this paper, we introduce the notion of Osilike-Berinde-G-nonexpansive mappings in metric spaces and show that every Osilike-Berinde-G-nonexpansive mapping with nonempty fixed point set is a G-quasinonexpansive mapping. We also prove the demiclosed principle and apply it to obtain a fixed point theorem for Osilike-Berinde-G-nonexpansive mappings. Strong and ∆−convergence theorems of the Ishikawa iteration process for G-quasinonexpansive mappings are also discussed. | en_US |
dc.subject | Mathematics | en_US |
dc.title | Fixed points of Osilike-Berinde-G-nonexpansive mappings in metric spaces endowed with graphs | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | Carpathian Journal of Mathematics | en_US |
article.volume | 37 | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.