Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/76884
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Wanchai Tapanyo | en_US |
dc.contributor.author | Khuanchanok Chaichana | en_US |
dc.date.accessioned | 2022-10-16T07:19:45Z | - |
dc.date.available | 2022-10-16T07:19:45Z | - |
dc.date.issued | 2021-01-01 | en_US |
dc.identifier.issn | 09720529 | en_US |
dc.identifier.other | 2-s2.0-85111857817 | en_US |
dc.identifier.other | 10.1080/09720529.2021.1930649 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85111857817&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/76884 | - |
dc.description.abstract | For any natural number N, Γ K (N) where K is a subgroup of (Figure presented.) is a congruence subgroup of the modular group Γ acting on (Figure presented.). We determine orbits of the action of Γ K (N) on (Figure presented.) and present a Γ K (N) invariant equivalence relation by imprimitive action. Then, we investigate the suborbital graph (Figure presented.) arising from the action of Γ K (N) on the orbit of ∞ and give conditions for two adjacent vertices in graph. In addition, we obtain connectedness properties of the subgraph (Figure presented.). | en_US |
dc.subject | Mathematics | en_US |
dc.title | The action of Γ <sup>K</sup> (N) and its suborbital graphs | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | Journal of Discrete Mathematical Sciences and Cryptography | en_US |
article.volume | 24 | en_US |
article.stream.affiliations | Nakhon Sawan Rajabhat University | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.