Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/76876
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHai Q. Dinhen_US
dc.contributor.authorBac T. Nguyenen_US
dc.contributor.authorRoengchai Tansuchaten_US
dc.date.accessioned2022-10-16T07:19:36Z-
dc.date.available2022-10-16T07:19:36Z-
dc.date.issued2021-01-01en_US
dc.identifier.issn09381279en_US
dc.identifier.other2-s2.0-85117392093en_US
dc.identifier.other10.1007/s00200-021-00531-6en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85117392093&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/76876-
dc.description.abstractFor any odd prime p≠ 5 , the structures of cyclic codes of length 5 ps over Fpm are applied to construct quantum error-correcting codes (briefly, QEC codes). Some new QEC codes are provided in the sense that their parameters are different from all the previous constructions. We give all quantum maximum-distance-separable (briefly, qMDS codes) constructed by the CSS construction. We also construct quantum synchronizable codes (briefly, QSCs). To enrich the variety of available QSCs, many new QSCs are constructed to illustrate our results. Among them, there are QSCs codes with shorter lengths and much larger minimum distances than known primitive narrow-sense BCH codes.en_US
dc.subjectMathematicsen_US
dc.titleQuantum MDS and synchronizable codes from cyclic codes of length 5 p<sup>s</sup> over F<sup>pm</sup>en_US
dc.typeJournalen_US
article.title.sourcetitleApplicable Algebra in Engineering, Communications and Computingen_US
article.stream.affiliationsDuy Tan Universityen_US
article.stream.affiliationsKent State Universityen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.