Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/76870
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChainarong Khunpanuken_US
dc.contributor.authorBancha Panyanaken_US
dc.contributor.authorNuttapol Pakkaranangen_US
dc.date.accessioned2022-10-16T07:19:32Z-
dc.date.available2022-10-16T07:19:32Z-
dc.date.issued2021-01-01en_US
dc.identifier.issn23148888en_US
dc.identifier.issn23148896en_US
dc.identifier.other2-s2.0-85122241105en_US
dc.identifier.other10.1155/2021/8327694en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85122241105&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/76870-
dc.description.abstractThe primary objective of this study is to introduce two novel extragradient-type iterative schemes for solving variational inequality problems in a real Hilbert space. The proposed iterative schemes extend the well-known subgradient extragradient method and are used to solve variational inequalities involving the pseudomonotone operator in real Hilbert spaces. The proposed iterative methods have the primary advantage of using a simple mathematical formula for step size rule based on operator information rather than the Lipschitz constant or another line search method. Strong convergence results for the suggested iterative algorithms are well-established for mild conditions, such as Lipschitz continuity and mapping monotonicity. Finally, we present many numerical experiments that show the effectiveness and superiority of iterative methods.en_US
dc.subjectMathematicsen_US
dc.titleTwo Nonmonotonic Self-Adaptive Strongly Convergent Projection-Type Methods for Solving Pseudomonotone Variational Inequalitiesen_US
dc.typeJournalen_US
article.title.sourcetitleJournal of Function Spacesen_US
article.volume2021en_US
article.stream.affiliationsPhetchabun Rajabhat Universityen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.