Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/76809
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHai Q. Dinhen_US
dc.contributor.authorHualu Liuen_US
dc.contributor.authorRoengchai Tansuchaten_US
dc.contributor.authorThang M. Voen_US
dc.date.accessioned2022-10-16T07:18:42Z-
dc.date.available2022-10-16T07:18:42Z-
dc.date.issued2021-12-01en_US
dc.identifier.issn10053867en_US
dc.identifier.other2-s2.0-85119013408en_US
dc.identifier.other10.1142/S1005386721000468en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85119013408&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/76809-
dc.description.abstractNegacyclic codes of length 2s over the Galois ring GR(2a, m) are linearly ordered under set-theoretic inclusion, i.e., they are the ideals <(x+1)i>, 0≤ i≤ 2sa, of the chain ring GR(2aaa, m) [x ]/< x2s +1>. This structure is used to obtain the symbol-pair distances of all such negacyclic codes. Among others, for the special case when the alphabet is the finite field F2m (i.e., a=1), the symbol-pair distance distribution of constacyclic codes over F2m verifies the Singleton bound for such symbol-pair codes, and provides all maximum distance separable symbol-pair constacyclic codes of length 2s over F2m.en_US
dc.subjectMathematicsen_US
dc.titleSymbol-pair distances of repeated-root negacyclic codes of length 2<sup>s</sup>over Galois ringsen_US
dc.typeJournalen_US
article.title.sourcetitleAlgebra Colloquiumen_US
article.volume28en_US
article.stream.affiliationsHubei University of Technologyen_US
article.stream.affiliationsKent State Universityen_US
article.stream.affiliationsOhio Universityen_US
article.stream.affiliationsChiang Mai Universityen_US
article.stream.affiliationsIndustrial University of Vinhen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.