Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/76650
Title: Deep learning feature extraction approach for hematopoietic cancer subtype classification
Authors: Kwang Ho Park
Erdenebileg Batbaatar
Yongjun Piao
Nipon Theera-Umpon
Keun Ho Ryu
Authors: Kwang Ho Park
Erdenebileg Batbaatar
Yongjun Piao
Nipon Theera-Umpon
Keun Ho Ryu
Keywords: Environmental Science;Medicine
Issue Date: 2-Feb-2021
Abstract: Hematopoietic cancer is a malignant transformation in immune system cells. Hematopoietic cancer is characterized by the cells that are expressed, so it is usually difficult to distinguish its heterogeneities in the hematopoiesis process. Traditional approaches for cancer subtyping use statistical techniques. Furthermore, due to the overfitting problem of small samples, in case of a minor cancer, it does not have enough sample material for building a classification model. Therefore, we propose not only to build a classification model for five major subtypes using two kinds of losses, namely reconstruction loss and classification loss, but also to extract suitable features using a deep autoencoder. Furthermore, for considering the data imbalance problem, we apply an oversampling algorithm, the synthetic minority oversampling technique (SMOTE). For validation of our proposed autoencoder-based feature extraction approach for hematopoietic cancer subtype classification, we compared other traditional feature selection algorithms (principal component analysis, non-negative matrix factorization) and classification algorithms with the SMOTE oversampling approach. Additionally, we used the Shapley Additive exPlanations (SHAP) interpretation technique in our model to explain the important gene/protein for hematopoietic cancer subtype classification. Furthermore, we compared five widely used classification algorithms, including logistic regression, random forest, k-nearest neighbor, artificial neural network and support vector machine. The results of autoencoder-based feature extraction approaches showed good performance, and the best result was the SMOTE oversampling-applied support vector machine algorithm consider both focal loss and reconstruction loss as the loss function for autoencoder (AE) feature selection approach, which produced 97.01% accuracy, 92.60% recall, 99.52% specificity, 93.54% F1-measure, 97.87% G-mean and 95.46% index of balanced accuracy as subtype classification performance measures.
URI: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85101335399&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/76650
ISSN: 16604601
16617827
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.