Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/76263
Full metadata record
DC FieldValueLanguage
dc.contributor.authorParavee Maneejuken_US
dc.date.accessioned2022-10-16T07:07:36Z-
dc.date.available2022-10-16T07:07:36Z-
dc.date.issued2021-06-01en_US
dc.identifier.issn14337479en_US
dc.identifier.issn14327643en_US
dc.identifier.other2-s2.0-85104895014en_US
dc.identifier.other10.1007/s00500-021-05805-2en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85104895014&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/76263-
dc.description.abstractMotivated by the advances in the estimation of parameters in linear models by regularization methods such as Ridge and Lasso regularizations, we investigate regularization of Generalized Maximum Entropy, which is an alternative estimation method in linear models. Our simulations confirm the better performance of the regularized Generalized Maximum Entropy estimation method, which could stimulate further theoretical research. An application of the new estimation method is illustrated with data from Thailand concerning the effect of education on economic growth.en_US
dc.subjectComputer Scienceen_US
dc.subjectMathematicsen_US
dc.titleOn regularization of generalized maximum entropy for linear modelsen_US
dc.typeJournalen_US
article.title.sourcetitleSoft Computingen_US
article.volume25en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.