Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/76073
Full metadata record
DC FieldValueLanguage
dc.contributor.authorThongchai Dumrongpokaphanen_US
dc.contributor.authorSotiris K. Ntouyasen_US
dc.contributor.authorThanin Sitthiwiratthamen_US
dc.date.accessioned2022-10-16T07:05:07Z-
dc.date.available2022-10-16T07:05:07Z-
dc.date.issued2021-11-01en_US
dc.identifier.issn20738994en_US
dc.identifier.other2-s2.0-85119998375en_US
dc.identifier.other10.3390/sym13112212en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85119998375&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/76073-
dc.description.abstractIn this paper, we study a boundary value problem involving (p, q)-integrodifference equations, supplemented with nonlocal fractional (p, q)-integral boundary conditions with respect to asymmetric operators. First, we convert the given nonlinear problem into a fixed-point problem, by considering a linear variant of the problem at hand. Once the fixed-point operator is available, existence and uniqueness results are established using the classical Banach’s and Schaefer’s fixedpoint theorems. The application of the main results is demonstrated by presenting numerical examples. Moreover, we study some properties of (p, q)-integral that are used in our study.en_US
dc.subjectChemistryen_US
dc.subjectComputer Scienceen_US
dc.subjectMathematicsen_US
dc.subjectPhysics and Astronomyen_US
dc.titleSeparate fractional (P, q)-integrodifference equations via nonlocal fractional (p, q)-integral boundary conditionsen_US
dc.typeJournalen_US
article.title.sourcetitleSymmetryen_US
article.volume13en_US
article.stream.affiliationsUniversity of Ioanninaen_US
article.stream.affiliationsKing Abdulaziz Universityen_US
article.stream.affiliationsSuan Dusit Universityen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.