Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/75766
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMeijing Lien_US
dc.contributor.authorTianjie Chenen_US
dc.contributor.authorKeun Ho Ryuen_US
dc.contributor.authorCheng Hao Jinen_US
dc.date.accessioned2022-10-16T07:02:34Z-
dc.date.available2022-10-16T07:02:34Z-
dc.date.issued2021-01-01en_US
dc.identifier.issn17486718en_US
dc.identifier.issn1748670Xen_US
dc.identifier.other2-s2.0-85119969977en_US
dc.identifier.other10.1155/2021/7937573en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85119969977&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/75766-
dc.description.abstractSemantic mining is always a challenge for big biomedical text data. Ontology has been widely proved and used to extract semantic information. However, the process of ontology-based semantic similarity calculation is so complex that it cannot measure the similarity for big text data. To solve this problem, we propose a parallelized semantic similarity measurement method based on Hadoop MapReduce for big text data. At first, we preprocess and extract the semantic features from documents. Then, we calculate the document semantic similarity based on ontology network structure under MapReduce framework. Finally, based on the generated semantic document similarity, document clusters are generated via clustering algorithms. To validate the effectiveness, we use two kinds of open datasets. The experimental results show that the traditional methods can hardly work for more than ten thousand biomedical documents. The proposed method keeps efficient and accurate for big dataset and is of high parallelism and scalability.en_US
dc.subjectBiochemistry, Genetics and Molecular Biologyen_US
dc.subjectImmunology and Microbiologyen_US
dc.subjectMathematicsen_US
dc.titleAn Efficient Parallelized Ontology Network-Based Semantic Similarity Measure for Big Biomedical Document Clusteringen_US
dc.typeJournalen_US
article.title.sourcetitleComputational and Mathematical Methods in Medicineen_US
article.volume2021en_US
article.stream.affiliationsTon-Duc-Thang Universityen_US
article.stream.affiliationsShanghai Maritime Universityen_US
article.stream.affiliationsChungbuk National Universityen_US
article.stream.affiliationsChiang Mai Universityen_US
article.stream.affiliationsENN Research Institute of Digital Technologyen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.