Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/75591
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJiraporn Kantapanen_US
dc.contributor.authorNampeung Anukulen_US
dc.contributor.authorNipapan Leetrakoolen_US
dc.contributor.authorGwenaël Rolinen_US
dc.contributor.authorJackie Vergoteen_US
dc.contributor.authorNathupakorn Dechsupaen_US
dc.date.accessioned2022-10-16T07:01:02Z-
dc.date.available2022-10-16T07:01:02Z-
dc.date.issued2021-08-02en_US
dc.identifier.issn14220067en_US
dc.identifier.issn16616596en_US
dc.identifier.other2-s2.0-85112502566en_US
dc.identifier.other10.3390/ijms22168851en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85112502566&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/75591-
dc.description.abstractCell-based therapy is a highly promising treatment paradigm in ischemic disease due to its ability to repair tissue when implanted into a damaged site. These therapeutic effects involve a strong paracrine component resulting from the high levels of bioactive molecules secreted in response to the local microenvironment. Therefore, the secreted therapeutic can be modulated by preconditioning the cells during in vitro culturing. Herein, we investigated the potential use of magnetic resonance imaging (MRI) probes, the “iron–quercetin complex” or IronQ, for preconditioning peripheral blood mononuclear cells (PBMCs) to expand proangiogenic cells and enhance their secreted therapeutic factors. PBMCs obtained from healthy donor blood were cultured in the presence of the iron–quercetin complex. Differentiated preconditioning PBMCs were characterized by immunostaining. An enzymelinked immunosorbent assay was carried out to describe the secreted cytokines. In vitro migration and tubular formation using human umbilical vein endothelial cells (HUVECs) were completed to investigate the proangiogenic efficacy. IronQ significantly increased mononuclear progenitor cell proliferation and differentiation into spindle-shape-like cells, expressing both hematopoietic and stromal cell markers. The expansion increased the number of colony-forming units (CFU-Hill). The conditioned medium obtained from IronQ-treated PBMCs contained high levels of interleukin 8 (IL-8), IL-10, urokinase-type-plasminogen-activator (uPA), matrix metalloproteinases-9 (MMP-9), and tumor necrosis factor-alpha (TNF-α), as well as augmented migration and capillary network formation of HUVECs and fibroblast cells, in vitro. Our study demonstrated that the IronQ-preconditioning PBMC protocol could enhance the angiogenic and reparative potential of non-mobilized PBMCs. This protocol might be used as an adjunctive strategy to improve the efficacy of cell therapy when using PBMCs for ischemic diseases and chronic wounds. However, in vivo assessment is required for further validation.en_US
dc.subjectBiochemistry, Genetics and Molecular Biologyen_US
dc.subjectChemical Engineeringen_US
dc.subjectChemistryen_US
dc.subjectComputer Scienceen_US
dc.titleIron–quercetin complex preconditioning of human peripheral blood mononuclear cells accelerates angiogenic and fibroblast migration: Implications for wound healingen_US
dc.typeJournalen_US
article.title.sourcetitleInternational Journal of Molecular Sciencesen_US
article.volume22en_US
article.stream.affiliationsUniversité Bourgogne Franche-Comtéen_US
article.stream.affiliationsUniversité de Toursen_US
article.stream.affiliationsCentre Hospitalier Universitaire de Besançonen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.