Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/75547
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHatairat Yingtaweesittikulen_US
dc.contributor.authorVites Longanien_US
dc.date.accessioned2022-10-16T07:00:40Z-
dc.date.available2022-10-16T07:00:40Z-
dc.date.issued2022-06-01en_US
dc.identifier.issn16860209en_US
dc.identifier.other2-s2.0-85133729949en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85133729949&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/75547-
dc.description.abstractIt is known that K2n+1 is the sum of n spanning cycles. In this paper we show that when 2n + 1 is prime number we can have additional property that all lines of the first cycle have distances 1, all lines of the second cycle have distances 2, …, and all lines of the n-th cycle have distances n. Also, when 2n + 1 is not prime number, this property is not possible.en_US
dc.subjectMathematicsen_US
dc.titleA Property of K<inf>2n+1</inf> as the Sum of n Spanning Cyclesen_US
dc.typeJournalen_US
article.title.sourcetitleThai Journal of Mathematicsen_US
article.volume20en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.