Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/75533
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTeerapong Suksumranen_US
dc.date.accessioned2022-10-16T07:00:32Z-
dc.date.available2022-10-16T07:00:32Z-
dc.date.issued2022-08-01en_US
dc.identifier.issn16605454en_US
dc.identifier.issn16605446en_US
dc.identifier.other2-s2.0-85130469393en_US
dc.identifier.other10.1007/s00009-022-02051-0en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85130469393&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/75533-
dc.description.abstractUsing Klein’s approach, geometry can be studied in terms of a space of points and a group of transformations of that space. This allows us to apply algebraic tools in studying geometry of mathematical structures. In this article, we follow Klein’s approach to study the geometry (G, T) , where G is an abstract gyrogroup and T is an appropriate group of transformations containing all gyroautomorphisms of G. We focus on n-transitivity of gyrogroups and also give a few characterizations of coset spaces to be minimally invariant sets. We then prove that the collection of open balls of equal radius is a minimally invariant set of the geometry (G, Γ m) for any normed gyrogroup G, where Γ m is a suitable group of isometries of G.en_US
dc.subjectMathematicsen_US
dc.titleGeometry of Gyrogroups via Klein’s Approachen_US
dc.typeJournalen_US
article.title.sourcetitleMediterranean Journal of Mathematicsen_US
article.volume19en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.