Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/75318
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPisit Kaewkhamen_US
dc.contributor.authorWasawat Nakkiewen_US
dc.contributor.authorAdirek Baisukhanen_US
dc.date.accessioned2022-10-16T06:58:24Z-
dc.date.available2022-10-16T06:58:24Z-
dc.date.issued2022-09-01en_US
dc.identifier.issn19961944en_US
dc.identifier.other2-s2.0-85138817704en_US
dc.identifier.other10.3390/ma15186275en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85138817704&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/75318-
dc.description.abstractThe main purpose of this research was to enhance the mechanical properties of friction stir welds (FSW) in the dissimilar aluminum alloys 6061-T6 and 7075-T651. The welded workpiece has tensile residual stress due to the influence of the thermal conductivity of dissimilar materials, resulting in crack initiation and less fatigue strength. The experiment started from the FSW process using the 2k full factorial with the response surface methodology (RSM) and central composite design (CCD) to investigate three factors. The experiment found that the optimal rotation speed and feed rate values were 979 and 65 mm/min, respectively. Then, the post-weld heat treatment process (PWHT) was applied. Following this, the 2k full factorial was used to investigate four factors involved in the deep rolling process (DR). The experiment found that the optimal deep rolling pressure and deep rolling offset values were 300 bar and 0.2 mm, respectively. Moreover, mechanical property testing was performed with a sequence of four design types of workpieces: FSW, FSW-PWHT, FSW-DR, and FSW-PWHT-DR. It was found that the FSW-PWHT-DR workpiece had an increase in tensile strength of up to 26.29% and increase in fatigue life of up to 129.47% when compared with the FSW workpieces, as well as a maximum compressive residual stress of −414 MPa.en_US
dc.subjectMaterials Scienceen_US
dc.titleMechanical Properties Enhancement of Dissimilar AA6061-T6 and AA7075-T651 Friction Stir Welds Coupled with Deep Rolling Processen_US
dc.typeJournalen_US
article.title.sourcetitleMaterialsen_US
article.volume15en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.