Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/73058
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHai Q. Dinhen_US
dc.contributor.authorHa T. Leen_US
dc.contributor.authorBac T. Nguyenen_US
dc.contributor.authorParavee Maneejuken_US
dc.date.accessioned2022-05-27T08:35:00Z-
dc.date.available2022-05-27T08:35:00Z-
dc.date.issued2022-01-01en_US
dc.identifier.issn09381279en_US
dc.identifier.other2-s2.0-85128466920en_US
dc.identifier.other10.1007/s00200-022-00549-4en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85128466920&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/73058-
dc.description.abstractIn this paper, δ-dual codes over finite commutative semi-simple rings are defined as a generalization of dual codes over finite commutative semi-simple rings. Some properties of δ-dual codes are given. We present necessary and sufficient conditions for a λ-constacyclic code of length n to be δ-self-dual, δ-self-orthogonal, δ-dual-containing, δ-LCD over finite commutative semi-simple rings. We also study the δ-dual of skew Θ -λ-constacyclic codes over finite commutative semi-simple rings. Among others, we also give necessary and sufficient conditions for a skew Θ -λ-constacyclic code of any length n to be δ-self-dual, δ-self-orthogonal, δ-dual-containing, δ-LCD over finite commutative semi-simple rings.en_US
dc.subjectMathematicsen_US
dc.titleδ-dual codes over finite commutative semi-simple ringsen_US
dc.typeJournalen_US
article.title.sourcetitleApplicable Algebra in Engineering, Communications and Computingen_US
article.stream.affiliationsDuy Tan Universityen_US
article.stream.affiliationsKent State Universityen_US
article.stream.affiliationsChiang Mai Universityen_US
article.stream.affiliationsThai Nguyen University of Medicine and Pharmacyen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.