Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/73043
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAdisak Hanjingen_US
dc.contributor.authorLimpapat Bussabanen_US
dc.contributor.authorSuthep Suantaien_US
dc.date.accessioned2022-05-27T08:34:47Z-
dc.date.available2022-05-27T08:34:47Z-
dc.date.issued2022-04-01en_US
dc.identifier.issn22277390en_US
dc.identifier.other2-s2.0-85127599052en_US
dc.identifier.other10.3390/math10071036en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85127599052&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/73043-
dc.description.abstractIn this paper, we propose a new accelerated algorithm for finding a common fixed point of nonexpansive operators, and then, a strong convergence result of the proposed method is discussed and analyzed in real Hilbert spaces. As an application, we create a new accelerated viscosity forward– backward method (AVFBM) for solving nonsmooth optimization problems of the sum of two objective functions in real Hilbert spaces, and the strong convergence of AVFBM to a minimizer of the sum of two convex functions is established. We also present the application and simulated results of AVFBM for image restoration and data classification problems.en_US
dc.subjectMathematicsen_US
dc.subjectComputer Scienceen_US
dc.subjectEngineeringen_US
dc.titleThe Modified Viscosity Approximation Method with Inertial Technique and Forward–Backward Algorithm for Convex Optimization Modelen_US
dc.typeJournalen_US
article.title.sourcetitleMathematicsen_US
article.volume10en_US
article.stream.affiliationsRajamangala University of Technology Isanen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.