Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/72864
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKannipa Motanateden_US
dc.contributor.authorNalin Eardkeawen_US
dc.contributor.authorPremanan Photeeen_US
dc.date.accessioned2022-05-27T08:30:40Z-
dc.date.available2022-05-27T08:30:40Z-
dc.date.issued2022-01-01en_US
dc.identifier.issn25228722en_US
dc.identifier.issn25228714en_US
dc.identifier.other2-s2.0-85125899893en_US
dc.identifier.other10.1007/978-3-030-72896-0_44en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85125899893&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/72864-
dc.description.abstractTunnel boring machine (TBM) performance prediction is essential for feasibility evaluation and planning purposes. Prediction models involve multiple geological and machine factors from field and laboratory studies. This paper presented an alternative method of feature selection for a less complex yet predictive model. The principal component analysis (PCA) was applied to a multivariate dataset of geological and tunnel boring machine parameters including thrust force, torque, the amount of small-, medium- and large-sized rock chips, quartz content, TBM penetration distance per revolution, and disc cutter wear of Mae Tang to Mae Ngat diversion tunnel project, Chiang Mai, Thailand. Variables with high loading factors from PC1 and PC2 are thrust force, torque, the amount of small- and medium-sized rock chips, and penetration rate. These five features have high contributions to the trends in data variation and should be considered as the most influential parameters when developing TBM performance models.en_US
dc.subjectEnergyen_US
dc.subjectEngineeringen_US
dc.subjectEnvironmental Scienceen_US
dc.titlePrincipal Component Analysis of Geological and Tunnel Boring Machine Parameters in Hard Rock (Thailand)en_US
dc.typeBook Seriesen_US
article.title.sourcetitleAdvances in Science, Technology and Innovationen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.