Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/72783
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHung T. Nguyenen_US
dc.date.accessioned2022-05-27T08:29:33Z-
dc.date.available2022-05-27T08:29:33Z-
dc.date.issued2022-01-01en_US
dc.identifier.issn18609503en_US
dc.identifier.issn1860949Xen_US
dc.identifier.other2-s2.0-85113411616en_US
dc.identifier.other10.1007/978-3-030-77094-5_1en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85113411616&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/72783-
dc.description.abstractThis paper aims at pointing out a variety of statistical structural models in which parameters of interest are subsets rather than points in parameter spaces, especially in partially identified econometric models. For conducting inferences in such situations, we emphasize the need to use random set theory and elaborate upon statistics of random sets.en_US
dc.subjectComputer Scienceen_US
dc.titleOn Random Sets for Inference in Statistics and Econometricsen_US
dc.typeBook Seriesen_US
article.title.sourcetitleStudies in Computational Intelligenceen_US
article.volume983en_US
article.stream.affiliationsNew Mexico State Universityen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.