Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/71551
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHai Q. DInhen_US
dc.contributor.authorBac T. Nguyenen_US
dc.contributor.authorSongsak Sriboonchittaen_US
dc.date.accessioned2021-01-27T03:54:01Z-
dc.date.available2021-01-27T03:54:01Z-
dc.date.issued2020-12-01en_US
dc.identifier.issn10053867en_US
dc.identifier.other2-s2.0-85096058725en_US
dc.identifier.other10.1142/S1005386720000589en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85096058725&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/71551-
dc.description.abstract© 2020 Academy of Mathematics and Systems Science, Chinese Academy of Sciences. We study skew cyclic codes over a class of rings R=FF1Ft-1, where each Fi (i=0,...,t-1) is a finite field. We prove that a skew cyclic code of arbitrary length over R is equivalent to either a usual cyclic code or a quasi-cyclic code over R. Moreover, we discuss possible extension of our results in the more general setting of R-dual skew constacyclic codes over R, where R is an automorphism of R.en_US
dc.subjectMathematicsen_US
dc.titleA Note on Skew Cyclic Codes over a Class of Ringsen_US
dc.typeJournalen_US
article.title.sourcetitleAlgebra Colloquiumen_US
article.volume27en_US
article.stream.affiliationsTon-Duc-Thang Universityen_US
article.stream.affiliationsChiang Mai Universityen_US
article.stream.affiliationsUniversity of Economics and Business Administrationen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.