Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/71034
Title: Geant4-DNA simulation of radiation effects in DNA on strand breaks from ultra-low-energy particles
Authors: P. Nimmanpipug
V. S. Lee
P. Kruanopparatana
L. D. Yu
Authors: P. Nimmanpipug
V. S. Lee
P. Kruanopparatana
L. D. Yu
Keywords: Physics and Astronomy
Issue Date: 15-Jul-2020
Abstract: © 2020 Elsevier B.V. The work was aimed at using Geant4-DNA software to simulate ultra-low-energy particle irradiation of DNA to understand relevant effects and fundamentals on DNA strand breaks. Light particle species of electron, hydrogen, proton, helium (He), He+ and He2+ with energy ranged in 10 – 1000 eV and fluence varied from 5 × 103 to 1 × 105 particles/cm2 irradiated DNA models, poly-AT, poly-CG and pGFP. The irradiation effect on DNA single strand breaks (SSBs) and double strand breaks (DSBs), particularly the latter, was focused. Results showed that the ratios between the numbers of SSBs and DSBs were nearly the same, independent of the particle energy and fluence. DSBs increased with increasing of ion energy, but not depended on the fluence. Discrepancies between the simulation and experiments were discussed, attributed to the simulation code overlooking the direct interaction of elastic collision between the particle and the DNA atom to cause atomic displacement.
URI: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85084672850&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/71034
ISSN: 0168583X
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.