Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/70725
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTeerapong Suksumranen_US
dc.date.accessioned2020-10-14T08:40:04Z-
dc.date.available2020-10-14T08:40:04Z-
dc.date.issued2020-01-01en_US
dc.identifier.issn19316836en_US
dc.identifier.issn19316828en_US
dc.identifier.other2-s2.0-85090711685en_US
dc.identifier.other10.1007/978-3-030-44625-3_26en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85090711685&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/70725-
dc.description.abstract© Springer Nature Switzerland AG 2020. The space of n-dimensional relativistic velocities normalized to c = 1, (Formula Presented) is naturally associated with Einstein velocity addition (Formula Presented), which induces the rapidity metric dE on B given by (Formula Presented). This metric is also known as the Cayley–Klein metric. We give a complete description of the isometry group of (B, dE), along with its composition law.en_US
dc.subjectMathematicsen_US
dc.titleThe isometry group of n-dimensional einstein gyrogroupen_US
dc.typeBook Seriesen_US
article.title.sourcetitleSpringer Optimization and Its Applicationsen_US
article.volume159en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.