Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/70701
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Phakdi Charoensawan | en_US |
dc.contributor.author | Raweerote Suparatulatorn | en_US |
dc.date.accessioned | 2020-10-14T08:39:34Z | - |
dc.date.available | 2020-10-14T08:39:34Z | - |
dc.date.issued | 2020-09-01 | en_US |
dc.identifier.issn | 16860209 | en_US |
dc.identifier.other | 2-s2.0-85091961930 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85091961930&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/70701 | - |
dc.description.abstract | © 2020 by TJM. All rights reserved. In this work, we solve the following additive s-functional inequality: ‖f(x + y) − f(x) − f(y)‖ ≤ ‖s(f(x − y) − f(x) − f(−y))‖, (0.1) where s is a fixed nonzero complex number with |s| < 1. We prove the HyersUlam stability of the additive s-functional inequality (0.1) in complex Banach spaces by using the fixed point method and the direct method. Moreover, we prove the HyersUlam stability of hom-derivations in complex Banach algebras. | en_US |
dc.subject | Mathematics | en_US |
dc.title | Hyers-ulam stability of the additive s-functional inequality and hom-derivations in banach algebras | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | Thai Journal of Mathematics | en_US |
article.volume | 18 | en_US |
article.stream.affiliations | South Carolina Commission on Higher Education | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.