Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/70608
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNawapong Chumhaen_US
dc.contributor.authorSujitra Funsueben_US
dc.contributor.authorSila Kittiwachanaen_US
dc.contributor.authorPimonpan Rattanapattanakulen_US
dc.contributor.authorPeerasak Lerttrakarnnonen_US
dc.date.accessioned2020-10-14T08:35:25Z-
dc.date.available2020-10-14T08:35:25Z-
dc.date.issued2020-09-01en_US
dc.identifier.issn16604601en_US
dc.identifier.issn16617827en_US
dc.identifier.other2-s2.0-85091514171en_US
dc.identifier.other10.3390/ijerph17186808en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85091514171&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/70608-
dc.description.abstract© 2020 by the authors. Licensee MDPI, Basel, Switzerland. Frailty, one of the major public health problems in the elderly, can result from multiple etiologic factors including biological and physical changes in the body which contribute to the reduction in the function of multiple bodily systems. A diagnosis of frailty can be reached using a variety of frailty assessment tools. In this study, general characteristics and health data were assessed using modified versions of Fried’s Frailty Phenotype (mFFP) and the Frail Non-Disabled (FiND) questionnaire (mFiND) to construct a Self-Organizing Map (SOM). Trained data, composed of the component planes of each variable, were visualized using 2-dimentional hexagonal grid maps. The relationship between the variables and the final SOM was then investigated. The SOM model using the modified FiND questionnaire showed a correct classification rate (%CC) of about 66% rather than the model responded to mFFP models. The SOM Discrimination Index (SOMDI) identified cataracts/glaucoma, age, sex, stroke, polypharmacy, gout, and sufficiency of income, in that order, as the top frailty-associated factors. The SOM model, based on the mFiND questionnaire frailty assessment, is an appropriate tool for assessment of frailty in the Thai elderly. Cataracts/glaucoma, stroke, polypharmacy, and gout are all modifiable early prediction factors of frailty in the Thai elderly.en_US
dc.subjectEnvironmental Scienceen_US
dc.subjectMedicineen_US
dc.titleAn artificial neural network model for assessing frailty-associated factors in the Thai populationen_US
dc.typeJournalen_US
article.title.sourcetitleInternational Journal of Environmental Research and Public Healthen_US
article.volume17en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.