Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/70467
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPrasit Cholamjiaken_US
dc.contributor.authorNattawut Pholasaen_US
dc.contributor.authorSuthep Suantaien_US
dc.contributor.authorPongsakorn Sunthrayuthen_US
dc.date.accessioned2020-10-14T08:31:30Z-
dc.date.available2020-10-14T08:31:30Z-
dc.date.issued2020-01-01en_US
dc.identifier.issn10294945en_US
dc.identifier.issn02331934en_US
dc.identifier.other2-s2.0-85087689558en_US
dc.identifier.other10.1080/02331934.2020.1789131en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85087689558&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/70467-
dc.description.abstract© 2020, © 2020 Informa UK Limited, trading as Taylor & Francis Group. In this paper, we propose a generalized viscosity explicit method for finding zeros of the sum of two accretive operators in the framework of Banach spaces. The strong convergence theorem of such method is proved under some suitable assumption on the parameters. As applications, we apply our main result to the variational inequality problem, the convex minimization problem and the split feasibility problem. The numerical experiments to illustrate the behaviour of the proposed method including compare it with other methods are also presented.en_US
dc.subjectDecision Sciencesen_US
dc.subjectMathematicsen_US
dc.titleThe generalized viscosity explicit rules for solving variational inclusion problems in Banach spacesen_US
dc.typeJournalen_US
article.title.sourcetitleOptimizationen_US
article.stream.affiliationsUniversity of Phayaoen_US
article.stream.affiliationsRajamangala University of Technology Thanyaburi (RMUTT)en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.