Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYuan Caoen_US
dc.contributor.authorYonglin Caoen_US
dc.contributor.authorHai Q. Dinhen_US
dc.contributor.authorTushar Bagen_US
dc.contributor.authorWoraphon Yamakaen_US
dc.description.abstract© 2013 IEEE. Let F2m be a finite field of 2m elements, λ and k be integers satisfying λ,k ≥ 2 and denote R= F2m[u]/‹ u2λ ›. Let δ,α F2m×. For any odd positive integer n, we give an explicit representation and enumeration for all distinct (δ +α u2)-constacyclic codes over R of length 2kn, and provide a clear formula to count the number of all these codes. In particular, we conclude that every (δ +α u2)-constacyclic code over R of length 2kn is an ideal generated by at most 2 polynomials in the ring R[x]/‹ x2kn-(δ +α u2)›. As an example, we listed all 135 distinct (1+u2)-constacyclic codes of length 4 over F2[u]/‹ u4›, and apply our results to determine all 11 self-dual codes among them.en_US
dc.subjectComputer Scienceen_US
dc.subjectMaterials Scienceen_US
dc.titleExplicit representation and enumeration of repeated-root (δ + αu<sup>2</sup>)-Constacyclic Codes over F<inf>2</inf><sup>m</sup>[u]/⟨u<sup>2?</sup>⟩en_US
article.title.sourcetitleIEEE Accessen_US
article.volume8en_US Institute of Technology Patnaen_US Universityen_US Universityen_US University of Technologyen_US University of Science and Technologyen_US Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.

Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.