Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/70462
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYan Liuen_US
dc.contributor.authorMinjia Shien_US
dc.contributor.authorHai Q. Dinhen_US
dc.contributor.authorSongsak Sriboonchittaen_US
dc.date.accessioned2020-10-14T08:31:19Z-
dc.date.available2020-10-14T08:31:19Z-
dc.date.issued2020-01-01en_US
dc.identifier.issn19305338en_US
dc.identifier.issn19305346en_US
dc.identifier.other2-s2.0-85086666745en_US
dc.identifier.other10.3934/amc.2020025en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85086666745&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/70462-
dc.description.abstract© 2020 AIMS. Let p be a prime different from 3, and ℓ be an odd prime different from 3 and p. In terms of generator polynomials, structures of constacyclic codes and their duals of length 3ℓmps over Fq are established, where q is a power of p. We discuss the enumeration of all cyclic codes of length 3 · 2sℓm, that generalizes the construction of [15] (2016), which is the special case of m = 1. In addition, as an application, the characterization and enumeration of all linear complementary dual cyclic codes of length 6ℓmps over Fq are obtained.en_US
dc.subjectComputer Scienceen_US
dc.subjectMathematicsen_US
dc.titleRepeated-root constacyclic codes of length 3ℓ<sup>m</sup>p<sup>s</sup>en_US
dc.typeJournalen_US
article.title.sourcetitleAdvances in Mathematics of Communicationsen_US
article.volume14en_US
article.stream.affiliationsTon-Duc-Thang Universityen_US
article.stream.affiliationsAnhui Universityen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.