Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/69257
Title: | การใส่ค่าข้อมูลที่ขาดหายโดยวิธีเพื่อนบ้านใกล้ที่สุดเคตัวเพื่อการจำแนกประเภทในชุดข้อมูลอสมดุล |
Other Titles: | k–Nearest Neighbour Imputation for Classification in Imbalance Datasets |
Authors: | จินตนา ตาคำ |
Authors: | ผู้ช่วยศาสตราจารย์ ดร.ชุมพล บุญคุ้มพรภัทร จินตนา ตาคำ |
Issue Date: | Apr-2015 |
Publisher: | เชียงใหม่ : บัณฑิตวิทยาลัย มหาวิทยาลัยเชียงใหม่ |
Abstract: | Class imbalance is a problem that aims to improve the accuracy of a minority class, while imputation is a process to replace missing values. Traditionally, class imbalance and imputation problems are considered independently. In addition, filled-in minority-class values that are substituted by traditional methods are not sufficient for imbalance datasets. In this paper, we provide a new parameter-free imputation to operate on imbalance datasets by estimating a random value between the mean of the missing value attribute and a value in this attribute of the closet record instance from the missing value record. Our proposed algorithm ignores mean of instances to avoid an over-fitting problem. Consequently, experimental results on imbalance datasets reveal that our imputation outperforms other techniques, when class imbalance measures are used. |
URI: | http://cmuir.cmu.ac.th/jspui/handle/6653943832/69257 |
Appears in Collections: | SCIENCE: Theses |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Full.pdf | 3.48 MB | Adobe PDF | View/Open Request a copy |
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.