Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/69257
Title: การใส่ค่าข้อมูลที่ขาดหายโดยวิธีเพื่อนบ้านใกล้ที่สุดเคตัวเพื่อการจำแนกประเภทในชุดข้อมูลอสมดุล
Other Titles: k–Nearest Neighbour Imputation for Classification in Imbalance Datasets
Authors: จินตนา ตาคำ
Authors: ผู้ช่วยศาสตราจารย์ ดร.ชุมพล บุญคุ้มพรภัทร
จินตนา ตาคำ
Issue Date: Apr-2015
Publisher: เชียงใหม่ : บัณฑิตวิทยาลัย มหาวิทยาลัยเชียงใหม่
Abstract: Class imbalance is a problem that aims to improve the accuracy of a minority class, while imputation is a process to replace missing values. Traditionally, class imbalance and imputation problems are considered independently. In addition, filled-in minority-class values that are substituted by traditional methods are not sufficient for imbalance datasets. In this paper, we provide a new parameter-free imputation to operate on imbalance datasets by estimating a random value between the mean of the missing value attribute and a value in this attribute of the closet record instance from the missing value record. Our proposed algorithm ignores mean of instances to avoid an over-fitting problem. Consequently, experimental results on imbalance datasets reveal that our imputation outperforms other techniques, when class imbalance measures are used.
URI: http://cmuir.cmu.ac.th/jspui/handle/6653943832/69257
Appears in Collections:SCIENCE: Theses

Files in This Item:
File Description SizeFormat 
Full.pdf3.48 MBAdobe PDFView/Open    Request a copy


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.