Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/68466
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMaciej Borodziken_US
dc.contributor.authorSupredee Dangskulen_US
dc.contributor.authorAndrew Ranickien_US
dc.date.accessioned2020-04-02T15:27:48Z-
dc.date.available2020-04-02T15:27:48Z-
dc.date.issued2020-01-01en_US
dc.identifier.issn15729060en_US
dc.identifier.issn0232704Xen_US
dc.identifier.other2-s2.0-85080992626en_US
dc.identifier.other10.1007/s10455-020-09707-8en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85080992626&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/68466-
dc.description.abstract© 2020, The Author(s). Given a smooth closed oriented manifold M of dimension n embedded in Rn+2, we study properties of the ‘solid angle’ function Φ: Rn+2\ M→ S1. It turns out that a non-critical level set of Φ is an explicit Seifert hypersurface for M. This gives an explicit analytic construction of a Seifert surface in higher dimensions.en_US
dc.subjectMathematicsen_US
dc.subjectSocial Sciencesen_US
dc.titleSolid angles and Seifert hypersurfacesen_US
dc.typeJournalen_US
article.title.sourcetitleAnnals of Global Analysis and Geometryen_US
article.stream.affiliationsSouth Carolina Commission on Higher Educationen_US
article.stream.affiliationsUniversity of Edinburghen_US
article.stream.affiliationsUniversity of Warsawen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.