Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/68466
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Maciej Borodzik | en_US |
dc.contributor.author | Supredee Dangskul | en_US |
dc.contributor.author | Andrew Ranicki | en_US |
dc.date.accessioned | 2020-04-02T15:27:48Z | - |
dc.date.available | 2020-04-02T15:27:48Z | - |
dc.date.issued | 2020-01-01 | en_US |
dc.identifier.issn | 15729060 | en_US |
dc.identifier.issn | 0232704X | en_US |
dc.identifier.other | 2-s2.0-85080992626 | en_US |
dc.identifier.other | 10.1007/s10455-020-09707-8 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85080992626&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/68466 | - |
dc.description.abstract | © 2020, The Author(s). Given a smooth closed oriented manifold M of dimension n embedded in Rn+2, we study properties of the ‘solid angle’ function Φ: Rn+2\ M→ S1. It turns out that a non-critical level set of Φ is an explicit Seifert hypersurface for M. This gives an explicit analytic construction of a Seifert surface in higher dimensions. | en_US |
dc.subject | Mathematics | en_US |
dc.subject | Social Sciences | en_US |
dc.title | Solid angles and Seifert hypersurfaces | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | Annals of Global Analysis and Geometry | en_US |
article.stream.affiliations | South Carolina Commission on Higher Education | en_US |
article.stream.affiliations | University of Edinburgh | en_US |
article.stream.affiliations | University of Warsaw | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.