Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/68456
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSuthep Suantaien_US
dc.contributor.authorPronpat Peeyadaen_US
dc.contributor.authorDamrongsak Yambangwaien_US
dc.contributor.authorWatcharaporn Cholamjiaken_US
dc.date.accessioned2020-04-02T15:27:39Z-
dc.date.available2020-04-02T15:27:39Z-
dc.date.issued2020-02-01en_US
dc.identifier.issn22277390en_US
dc.identifier.other2-s2.0-85080143644en_US
dc.identifier.other10.3390/math8020248en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85080143644&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/68456-
dc.description.abstract© 2020 by the authors. In this paper, we study a modified viscosity type subgradient extragradient-line method with a parallel monotone hybrid algorithm for approximating a common solution of variational inequality problems. Under suitable conditions in Hilbert spaces, the strong convergence theorem of the proposed algorithm to such a common solution is proved. We then give numerical examples in both finite and infinite dimensional spaces to justify our main theorem. Finally, we can show that our proposed algorithm is flexible and has good quality for use with common types of blur effects in image recovery.en_US
dc.subjectMathematicsen_US
dc.titleA parallel-viscosity-type subgradient extragradient-line method for finding the common solution of variational inequality problems applied to image restoration problemsen_US
dc.typeJournalen_US
article.title.sourcetitleMathematicsen_US
article.volume8en_US
article.stream.affiliationsUniversity of Phayaoen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.