Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYonglin Caoen_US
dc.contributor.authorYuan Caoen_US
dc.contributor.authorHai Q. Dinhen_US
dc.contributor.authorFang Wei Fuen_US
dc.contributor.authorParavee Maneejuken_US
dc.description.abstract© 2019 Elsevier B.V. For any prime number p, positive integers m,k,n, where n satisfies gcd(p,n)=1, and for any non-zero element λ0 of the finite field Fpm of cardinality pm, we prove that any λ0pk-constacyclic code of length pkn over the finite field Fpm is monomially equivalent to a matrix-product code of a nested sequence of pkλ0-constacyclic codes with length n over Fpm. As an application, we completely determine the Hamming distances of all negacyclic codes of length 7⋅2l over F7 for any integer l≥3.en_US
dc.titleOn matrix-product structure of repeated-root constacyclic codes over finite fieldsen_US
article.title.sourcetitleDiscrete Mathematicsen_US
article.volume343en_US Institute of Mathematicsen_US Universityen_US Universityen_US University of Technologyen_US University of Science and Technologyen_US Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.

Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.