Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/68451
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKritsada Sangkhananen_US
dc.contributor.authorJintana Sanwongen_US
dc.date.accessioned2020-04-02T15:27:37Z-
dc.date.available2020-04-02T15:27:37Z-
dc.date.issued2020-04-01en_US
dc.identifier.issn14322137en_US
dc.identifier.issn00371912en_US
dc.identifier.other2-s2.0-85079147994en_US
dc.identifier.other10.1007/s00233-020-10089-3en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85079147994&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/68451-
dc.description.abstract© 2020, Springer Science+Business Media, LLC, part of Springer Nature. Let Y be a subset of X and T(X, Y) the set of all functions from X into Y. Then, under the operation of composition, T(X, Y) is a subsemigroup of the full transformation semigroup T(X). Let E be an equivalence on X. Define a subsemigroup TE(X, Y) of T(X, Y) by TE(X,Y)={α∈T(X,Y):∀(x,y)∈E,(xα,yα)∈E}.Then TE(X, Y) is the semigroup of all continuous self-maps of the topological space X for which all E-classes form a basis carrying X into a subspace Y. In this paper, we give a necessary and sufficient condition for TE(X, Y) to be regular and characterize Green’s relations on TE(X, Y). Our work extends previous results found in the literature.en_US
dc.subjectMathematicsen_US
dc.titleRegularity and Green’s relations on semigroups of transformations with restricted range that preserve an equivalenceen_US
dc.typeJournalen_US
article.title.sourcetitleSemigroup Forumen_US
article.volume100en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.