Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/68424
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Robert H. Paul | en_US |
dc.contributor.author | Kyu S. Cho | en_US |
dc.contributor.author | Andrew C. Belden | en_US |
dc.contributor.author | Claude A. Mellins | en_US |
dc.contributor.author | Kathleen M. Malee | en_US |
dc.contributor.author | Reuben N. Robbins | en_US |
dc.contributor.author | Lauren E. Salminen | en_US |
dc.contributor.author | Stephen J. Kerr | en_US |
dc.contributor.author | Badri Adhikari | en_US |
dc.contributor.author | Paola M. Garcia-Egan | en_US |
dc.contributor.author | Jiratchaya Sophonphan | en_US |
dc.contributor.author | Linda Aurpibul | en_US |
dc.contributor.author | Kulvadee Thongpibul | en_US |
dc.contributor.author | Pope Kosalaraksa | en_US |
dc.contributor.author | Suparat Kanjanavanit | en_US |
dc.contributor.author | Chaiwat Ngampiyaskul | en_US |
dc.contributor.author | Jurai Wongsawat | en_US |
dc.contributor.author | Saphonn Vonthanak | en_US |
dc.contributor.author | Tulathip Suwanlerk | en_US |
dc.contributor.author | Victor G. Valcour | en_US |
dc.contributor.author | Rebecca N. Preston-Campbell | en_US |
dc.contributor.author | Jacob D. Bolzenious | en_US |
dc.contributor.author | Merlin L. Robb | en_US |
dc.contributor.author | Jintanat Ananworanich | en_US |
dc.contributor.author | Thanyawee Puthanakit | en_US |
dc.date.accessioned | 2020-04-02T15:26:53Z | - |
dc.date.available | 2020-04-02T15:26:53Z | - |
dc.date.issued | 2020-04-01 | en_US |
dc.identifier.issn | 14735571 | en_US |
dc.identifier.other | 2-s2.0-85081945901 | en_US |
dc.identifier.other | 10.1097/QAD.0000000000002471 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85081945901&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/68424 | - |
dc.description.abstract | OBJECTIVE: To develop a predictive model of neurocognitive trajectories in children with perinatal HIV (pHIV). DESIGN: Machine learning analysis of baseline and longitudinal predictors derived from clinical measures utilized in pediatric HIV. METHODS: Two hundred and eighty-five children (ages 2-14 years at baseline; Mage = 6.4 years) with pHIV in Southeast Asia underwent neurocognitive assessment at study enrollment and twice annually thereafter for an average of 5.4 years. Neurocognitive slopes were modeled to establish two subgroups [above (n = 145) and below average (n = 140) trajectories). Gradient-boosted multivariate regressions (GBM) with five-fold cross validation were conducted to examine baseline (pre-ART) and longitudinal predictive features derived from demographic, HIV disease, immune, mental health, and physical health indices (i.e. complete blood count [CBC]). RESULTS: The baseline GBM established a classifier of neurocognitive group designation with an average AUC of 79% built from HIV disease severity and immune markers. GBM analysis of longitudinal predictors with and without interactions improved the average AUC to 87 and 90%, respectively. Mental health problems and hematocrit levels also emerged as salient features in the longitudinal models, with novel interactions between mental health problems and both CD4 cell count and hematocrit levels. Average AUCs derived from each GBM model were higher than results obtained using logistic regression. CONCLUSION: Our findings support the feasibility of machine learning to identify children with pHIV at risk for suboptimal neurocognitive development. Results also suggest that interactions between HIV disease and mental health problems are early antecedents to neurocognitive difficulties in later childhood among youth with pHIV. | en_US |
dc.subject | Immunology and Microbiology | en_US |
dc.subject | Medicine | en_US |
dc.title | Machine-learning classification of neurocognitive performance in children with perinatal HIV initiating de novo antiretroviral therapy | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | AIDS (London, England) | en_US |
article.volume | 34 | en_US |
article.stream.affiliations | Thai Red Cross Agency | en_US |
article.stream.affiliations | Nakornping Hospital | en_US |
article.stream.affiliations | University of Missouri-St. Louis | en_US |
article.stream.affiliations | New York State Psychiatric Institute | en_US |
article.stream.affiliations | University of Southern California | en_US |
article.stream.affiliations | Prapokklao Hospital | en_US |
article.stream.affiliations | Chulalongkorn University | en_US |
article.stream.affiliations | University of California, San Francisco | en_US |
article.stream.affiliations | Khon Kaen University | en_US |
article.stream.affiliations | HJF | en_US |
article.stream.affiliations | Northwestern University Feinberg School of Medicine | en_US |
article.stream.affiliations | Missouri Institute of Mental Health | en_US |
article.stream.affiliations | Universiteit van Amsterdam | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
article.stream.affiliations | Research Institute for Health Sciences | en_US |
article.stream.affiliations | University of Health Sciences | en_US |
article.stream.affiliations | amfAR - The Foundation for AIDS Research | en_US |
article.stream.affiliations | Bamrasnaradura Infectious Diseases Institute | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.