Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/68350
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHai Q. DInhen_US
dc.contributor.authorBac T. Nguyenen_US
dc.contributor.authorSongsak Sriboonchittaen_US
dc.date.accessioned2020-04-02T15:25:19Z-
dc.date.available2020-04-02T15:25:19Z-
dc.date.issued2020-01-01en_US
dc.identifier.issn15579654en_US
dc.identifier.issn00189448en_US
dc.identifier.other2-s2.0-85075757089en_US
dc.identifier.other10.1109/TIT.2019.2941885en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85075757089&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/68350-
dc.description.abstract© 1963-2012 IEEE. Let p be an odd prime, s and m be positive integers. Cyclic codes of length 2ps over Fpm are the ideals (x-1i(x+1)j, where 0 ≤ i, j ≤ ps, of the principal ideal ring Fpm [x]/ x2ps-1. Using this structure, the symbol-pair distances of all cyclic codes of length 2ps over Fpm are completely determined. In addition, we establish all MDS symbol-pair cyclic codes of length 2ps over Fpm. Some MDS symbol-pair cyclic codes are better than all the known ones. Among others, we discuss possible applications to construct quantum MDS symbol-pair codes.en_US
dc.subjectComputer Scienceen_US
dc.subjectSocial Sciencesen_US
dc.titleMDS Symbol-Pair Cyclic Codes of Length 2p<sup>s</sup> over F<inf>p</inf><sup>m</sup>en_US
dc.typeJournalen_US
article.title.sourcetitleIEEE Transactions on Information Theoryen_US
article.volume66en_US
article.stream.affiliationsDuy Tan Universityen_US
article.stream.affiliationsTon-Duc-Thang Universityen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.