Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/68347
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Vladik Kreinovich | en_US |
dc.contributor.author | Olga Kosheleva | en_US |
dc.contributor.author | Shahnaz N. Shahbazova | en_US |
dc.contributor.author | Songsak Sriboonchitta | en_US |
dc.date.accessioned | 2020-04-02T15:25:18Z | - |
dc.date.available | 2020-04-02T15:25:18Z | - |
dc.date.issued | 2020-01-01 | en_US |
dc.identifier.issn | 18600808 | en_US |
dc.identifier.issn | 14349922 | en_US |
dc.identifier.other | 2-s2.0-85081610724 | en_US |
dc.identifier.other | 10.1007/978-3-030-38893-5_4 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85081610724&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/68347 | - |
dc.description.abstract | © 2020, Springer Nature Switzerland AG. Recently, a new empirically successful algorithm was proposed for crisp clustering: the K-sets algorithm. In this paper, we show that a natural uncertainty-based formalization of what is clustering automatically leads to the mathematical ideas and definitions behind this algorithm. Thus, we provide an explanation for this algorithm’s empirical success. | en_US |
dc.subject | Computer Science | en_US |
dc.subject | Mathematics | en_US |
dc.title | Probabilistic and More General Uncertainty-Based (e.g., Fuzzy) Approaches to Crisp Clustering Explain the Empirical Success of the K-Sets Algorithm | en_US |
dc.type | Book Series | en_US |
article.title.sourcetitle | Studies in Fuzziness and Soft Computing | en_US |
article.volume | 391 | en_US |
article.stream.affiliations | Azerbaijan Technical University | en_US |
article.stream.affiliations | The University of Texas at El Paso | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.