Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/68347
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVladik Kreinovichen_US
dc.contributor.authorOlga Koshelevaen_US
dc.contributor.authorShahnaz N. Shahbazovaen_US
dc.contributor.authorSongsak Sriboonchittaen_US
dc.date.accessioned2020-04-02T15:25:18Z-
dc.date.available2020-04-02T15:25:18Z-
dc.date.issued2020-01-01en_US
dc.identifier.issn18600808en_US
dc.identifier.issn14349922en_US
dc.identifier.other2-s2.0-85081610724en_US
dc.identifier.other10.1007/978-3-030-38893-5_4en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85081610724&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/68347-
dc.description.abstract© 2020, Springer Nature Switzerland AG. Recently, a new empirically successful algorithm was proposed for crisp clustering: the K-sets algorithm. In this paper, we show that a natural uncertainty-based formalization of what is clustering automatically leads to the mathematical ideas and definitions behind this algorithm. Thus, we provide an explanation for this algorithm’s empirical success.en_US
dc.subjectComputer Scienceen_US
dc.subjectMathematicsen_US
dc.titleProbabilistic and More General Uncertainty-Based (e.g., Fuzzy) Approaches to Crisp Clustering Explain the Empirical Success of the K-Sets Algorithmen_US
dc.typeBook Seriesen_US
article.title.sourcetitleStudies in Fuzziness and Soft Computingen_US
article.volume391en_US
article.stream.affiliationsAzerbaijan Technical Universityen_US
article.stream.affiliationsThe University of Texas at El Pasoen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.