Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/67907
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNares Sawatraksaen_US
dc.contributor.authorChaiwat Namnaken_US
dc.contributor.authorKritsada Sangkhananen_US
dc.date.accessioned2020-04-02T15:10:41Z-
dc.date.available2020-04-02T15:10:41Z-
dc.date.issued2019-08-01en_US
dc.identifier.issn16860209en_US
dc.identifier.other2-s2.0-85073390312en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85073390312&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/67907-
dc.description.abstract© 2019 by the Mathematical Association of Thailand. All rights reserved. Let X be an arbitrary nonempty set and T(X) the full transformation semigroup on X. For an equivalence relation E on X and a cross-section R of the partition X=E induced by E, let TE(X, R) = {α ∈ T(X): Rα = R and ∀x, y ∈, (x, y) ∈ E ⇒ (xα, yα) ∈ E}. Then the set Reg(TE(X, R)) of all regular elements of TE(X, R) is a regular sub- semigroup of T(X). In this paper, we describe Green’s relations for elements of the semigroup Reg(TE(X, R)). Also, we discuss the natural partial order on this semigroup and characterize when two elements in Reg(TE(X, R)) are related under this order.en_US
dc.subjectMathematicsen_US
dc.titleGreen’s relations and natural partial order on the regular subsemigroup of transformations preserving an equivalence relation and fixed a cross-sectionen_US
dc.typeJournalen_US
article.title.sourcetitleThai Journal of Mathematicsen_US
article.volume17en_US
article.stream.affiliationsNaresuan Universityen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.